首页 | 本学科首页   官方微博 | 高级检索  
     

灰色理论与神经网络在水华预测中的应用
引用本文:朱世平,刘载文,王小艺,戴军. 灰色理论与神经网络在水华预测中的应用[J]. 计算机工程与应用, 2011, 47(13): 231-233. DOI: 10.3778/j.issn.1002-8331.2011.13.065
作者姓名:朱世平  刘载文  王小艺  戴军
作者单位:北京工商大学 计算机与信息工程学院,北京 100048
摘    要:
在综合考虑生态系统中水华发生的机理特点基础上,采用改进的BP神经网络实现了对叶绿素最高点的非线性预测;利用灰色WPGM(1,1)模型的累加生成运算(AGO)对叶绿素最高值对应的时刻进行推算,从而预测水华的爆发时间点。经检验,神经网络预测结合灰色WPGM(1,1)预测模型相对误差在10%左右,能够对水华的发生进行判断和预报,有利于综合整治方案的优化和统筹。

关 键 词:水华预测  叶绿素尖点  BP神经网络  灰色拓扑预测  
修稿时间: 

Gray theory and neural network prediction for water bloom
ZHU Shiping,LIU Zaiwen,WANG Xiaoyi,DAI Jun. Gray theory and neural network prediction for water bloom[J]. Computer Engineering and Applications, 2011, 47(13): 231-233. DOI: 10.3778/j.issn.1002-8331.2011.13.065
Authors:ZHU Shiping  LIU Zaiwen  WANG Xiaoyi  DAI Jun
Affiliation:School of Computer Science and Information Engineering,Beijing Technology and Business University,Beijing 100048,China
Abstract:
Considering comprehensively the characteristics of water bloom occurrence mechanism in ecological system,the nonlinear prediction of the chlorophyll highest point is implemented based on improved BP neural network;and the time of maximum chlorophyll value is calculated based on the Accumulated Generating Operation(AGO) of WPGM(1,1) model.By inspection,the relative error of chlorophyll highest point model is controlled about 10%.The model is able to judge and predict the water bloom outbreak,and is beneficial to optimize and orchestrate the comprehensive regulation scheme
Keywords:water bloom prediction  the highest point of chlorophyll  Back Propagation(BP) neural network  grey topologicalprediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号