首页 | 本学科首页   官方微博 | 高级检索  
     

基于半监督假设的半监督稀疏度量学习
引用本文:王倩影,李炜. 基于半监督假设的半监督稀疏度量学习[J]. 计算机应用与软件, 2019, 36(10): 134-138
作者姓名:王倩影  李炜
作者单位:河北经贸大学数学与统计学学院 河北石家庄050051;河北经贸大学数学与统计学学院 河北石家庄050051
基金项目:国家自然科学基金;河北经贸大学研究生创新计划
摘    要:传统的有监督度量学习算法没有利用大量存在的无标记样本,且得到的度量矩阵复杂,难以了解不同原始特征的重要程度。针对这些情况,提出基于半监督假设的半监督稀疏度量学习算法。根据三样本组约束建立间隔损失函数;基于平滑假设、聚类假设、流形假设这三个半监督假设建立半监督正则项,并利用L1范数建立稀疏正则项;利用梯度下降法求解目标函数。实验结果表明,该算法学习得到的度量能有效地使不同类别的样本间距离增大,度量矩阵具有稀疏性,分界面穿过低密度区域,该算法在UCI的样本数据集上具有良好的分类准确性。

关 键 词:度量学习  半监督学习  半监督假设  稀疏

SEMI-SUPERVISED SPARSE METRIC LEARNING BASED ON SEMI-SUPERVISED ASSUMPTION
Wang Qianying,Li Wei. SEMI-SUPERVISED SPARSE METRIC LEARNING BASED ON SEMI-SUPERVISED ASSUMPTION[J]. Computer Applications and Software, 2019, 36(10): 134-138
Authors:Wang Qianying  Li Wei
Affiliation:(College of Mathematics and Statistics,Hebei University of Economics and Business,Shijiazhuang 050051,Hebei,China)
Abstract:Traditional supervised metric learning algorithms do not take advantage of the large number of unlabeled samples,and the resulting metric matrix is complex.So it is difficult to understand the importance of different input features.To solve these problems,we proposed a semi-supervised sparse metric learning algorithm based on semi-supervised assumption.The interval loss function was established according to the triplet constraints.Then,we established a semi-supervised regularization based on the three semi-supervised assumptions: smoothness assumption,cluster assumption and manifold assumption,and established a sparse regularization term by using L 1 norm.The gradient descent method was used to solve the objective function.The experimental results show that the metrics learned by the algorithm can effectively increase the distance between different types of samples,and the metrics matrix is sparse.The interface crosses the low-density region.The algorithm has good classification accuracy on the UCI sample.
Keywords:Metric learning  Semi-supervised learning  Semi-supervised assumption  Sparse
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号