首页 | 本学科首页   官方微博 | 高级检索  
     

融合RBF的二值神经网络推荐模型
引用本文:雷妍,贾连印,李孟娟,左喻灏,游进国,李晓武. 融合RBF的二值神经网络推荐模型[J]. 计算机应用与软件, 2019, 0(3): 76-80
作者姓名:雷妍  贾连印  李孟娟  左喻灏  游进国  李晓武
作者单位:1.昆明理工大学信息工程与自动化学院;2.云南省计算机技术应用重点实验室;3.云南师范大学图书馆
基金项目:国家自然科学基金项目(61562054;51467007;61462050)
摘    要:随着网络通信技术的快速发展和互联网信息资源的大规模扩张,信息过载问题日益严重,传统的信息服务使得这一问题得到缓解。但对具有海量条目的信息,用户要根据自己的喜欢找到想要的目标并不容易。为了解决该问题,提出一种融合径向基函数(RBF)的二值化卷积神经网络的推荐模型。该模型建立在卷积神经网络的基础上将输入数据预处理为0或1,极大节省数据存储空间并提高推荐效率。利用RBF建立可信任的亲属网络,根据亲属网络中的相似用户筛选出有用信息并进行分析做出相应推荐。针对电影推荐进行实验,实验结果表明该方法是有效可行的。

关 键 词:推荐  二值化神经网络  深度学习  径向基核函数

BINARY NEURAL NETWORK RECOMMENDATION MODEL BASED ON RBF
Lei Yan,Jia Lianyin,Li Mengjuan,Zuo Yuhao,You Jinguo,Li Xiaowu. BINARY NEURAL NETWORK RECOMMENDATION MODEL BASED ON RBF[J]. Computer Applications and Software, 2019, 0(3): 76-80
Authors:Lei Yan  Jia Lianyin  Li Mengjuan  Zuo Yuhao  You Jinguo  Li Xiaowu
Affiliation:(College of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;Key Laboratory of Computer Technology Applications of Yunnan Province, Kunming 650500, Yunnan, China;Library, Yunnan Normal University, Kunming 650500, Yunnan, China)
Abstract:With the rapid development of network communication technology and the great expansion of Internet information resources, information is overloading seriously which is mitigated by the traditional information services. However, it is still not easy for users to find their preferred items among the enormous number items on the Internet. To solve this problem, we proposed a recommendation model using binary convolution neural networks and radical basis function(RBF). Our model based on convolutional neural network preprocessed the input data to 0 or 1, saving data storage space and improving recommendation efficiency. We used RBF to establish a trusted kinship network, and made recommendations based on the useful information screened from similar users in the kinship network. This paper made an experiment on film recommendation. The experimental results show that the method is effective and feasible.
Keywords:Recommendation  Binary neural network  Deep learning  Radical basis function
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号