首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of interface curvature on Poiseuille flow through microchannels and microtubes containing superhydrophobic surfaces with transverse grooves and ribs
Authors:C. J. Teo  B. C. Khoo
Affiliation:1. Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
Abstract:This paper presents numerical results pertaining to the effects of interface curvature on the effective slip behavior of Poiseuille flow through microchannels and microtubes containing superhydrophobic surfaces with transverse ribs and grooves. The effects of interface curvature are systematically investigated for different normalized channel heights or tube diameters, shear-free fractions, and flow Reynolds numbers. The numerical results show that in the low Reynolds number Stokes flow regime, when the channel height or tube diameter (normalized using the groove–rib spacing) is sufficiently large, the critical interface protrusion angle at which the effective slip length becomes zero is θ c ≈ 62°–65°, which is independent of the shear-free fraction, flow geometry (channel and tube), and flow driving mechanism. As the normalized channel height or tube diameter is reduced, for a given shear-free fraction, the critical interface protrusion angle θ c decreases. As inertial effects become increasingly dominant corresponding to an increase in Reynolds number, the effective slip length decreases, with the tube flow exhibiting a more pronounced reduction than the channel flow. In addition, for the same corresponding values of shear-free fraction, normalized groove–rib spacing, and interface protrusion angle, longitudinal grooves are found to be consistently superior to transverse grooves in terms of effective slip performance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号