首页 | 本学科首页   官方微博 | 高级检索  
     


A novel low false alarm rate pedestrian detection framework based on single depth images
Affiliation:1. Research Institute of Electronic Engineering Technology, Harbin Institute of Technology, Mailbox 338, Harbin 150001, China;2. Communications and Signal Processing Research Group, Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
Abstract:Pedestrian detection is an important image understanding problem with many potential applications. There has been little success in creating an algorithm which exhibits a high detection rate while keeping the false alarm in a relatively low rate. This paper presents a method designed to resolve this problem. The proposed method uses the Kinect or any similar type of sensors which facilitate the extraction of a distinct foreground. Then potential regions, which are candidates for the presence of human(s), are detected by employing the widely used Histogram of Oriented Gradients (HOG) technique, which performs well in terms of good detection rates but suffers from significantly high false alarm rates. Our method applies a sequence of operations to eliminate the false alarms produced by the HOG detector based on investigating the fine details of local shape information. Local shape information can be identified by efficient utilization of the edge points which, in this work, are used to formulate the so called Shape Context (SC) model. The proposed detection framework is divided in four sequential stages, with each stage aiming at refining the detection results of the previous stage. In addition, our approach employs a pre-evaluation stage to pre-screen and restrict further detection results. Extensive experimental results on the dataset created by the authors, involves 673 images collected from 11 different scenes, demonstrate that the proposed method eliminates a large percentage of the false alarms produced by the HOG pedestrian detector.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号