首页 | 本学科首页   官方微博 | 高级检索  
     


Edge-pancyclicity and path-embeddability of bijective connection graphs
Authors:Jianxi Fan  Xiaohua Jia
Affiliation:a College of Information Engineering, Qingdao University, Qingdao 266071, China
b Department of Computer Science, City University of Hong Kong, Hong Kong
Abstract:An n-dimensional Bijective Connection graph (in brief BC graph) is a regular graph with 2n nodes and n2n−1 edges. The n-dimensional hypercube, crossed cube, Möbius cube, etc. are some examples of the n-dimensional BC graphs. In this paper, we propose a general method to study the edge-pancyclicity and path-embeddability of the BC graphs. First, we prove that a path of length l with dist(Xnxy) + 2 ? l ? 2n − 1 can be embedded between x and y with dilation 1 in Xn for xy ∈ V(Xn) with x ≠ y in Xn, where Xn (n ? 4) is a n-dimensional BC graph satisfying the three specific conditions and V(Xn) is the node set of Xn. Furthermore, by this result, we can claim that Xn is edge-pancyclic. Lastly, we show that these results can be applied to not only crossed cubes and Möbius cubes, but also other BC graphs except crossed cubes and Möbius cubes. So far, the research on edge-pancyclicity and path-embeddability has been limited in some specific interconnection architectures such as crossed cubes, Möbius cubes.
Keywords:Bijective connection graph   Crossed cube    bius cube   Graph embedding   Dilation   Edge-pancyclicity   Path   Parallel computing system
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号