首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的支持向量机模式分类方法
引用本文:姜斌,和湘,孙月光,黎湘. 一种改进的支持向量机模式分类方法[J]. 电光与控制, 2007, 14(4): 23-26
作者姓名:姜斌  和湘  孙月光  黎湘
作者单位:国防科技大学四院空间信息技术研究所,长沙,410073;通信指挥学院,武汉,430010
摘    要:支持向量机(Support Vector Machine,SVM)是在统计学习理论基础上发展起来的一种新的机器学习方法,已成为目前研究的热点,并在模式识别领域有了广泛的应用.首先分析了支持向量机原理,随后引入一种改进的径向基核函数,在此基础上,提出了一种改进核函数的SVM模式分类方法.与基于IRIS数据,进行了计算机仿真实验,与基干模糊k-近邻的模式分类仿真结果比较,结果表明改进的SVM方法分类性能比模糊k-近邻算法(Fuzzy k-Nearest Neighbor,FKNN)的分类性能更好,运算时间更短,更易于实时实现.

关 键 词:支持向量机  径向基核函数  模糊k-近邻  模式分类  模式识别  统计学习理论
文章编号:1671-637X(2007)04-0023-04
修稿时间:2006-01-16

An ameliorated pattern classification method of SVM
JIANG Bin,HE Xiang,SUN Yue-guang,LI Xiang. An ameliorated pattern classification method of SVM[J]. Electronics Optics & Control, 2007, 14(4): 23-26
Authors:JIANG Bin  HE Xiang  SUN Yue-guang  LI Xiang
Affiliation:1. Research Institute of Space Electronics Information Technology, National University of Defense Technology, Changsha 471003, China; 2. Command Academy of Communication, Wuhan 430010, China
Abstract:Support Vector Machine(SVM) is a new machine learning technique developed based on statistical learning theory,and it is attracting increasing attentions.For machine learning tasks involving pattern classification,SVM has become an increasingly popular tool.The theory of SVM is studied at first,then an ameliorated RBF kernel function is presented,based on which an improved kernel function pattern classification method of SVM is put forward.Finally,simulation is made based on the IRIS data and the result is compared with the pattern classification result of FKNN,which shows that the ameliorated SVM outperforms the FKNN,with shorter operation time and is more suitable for real-time implementation.
Keywords:Support Vector Machine(SVM)  RBF kernel function  fuzzy k-nearest neighbor  pattern classification  pattern recognition  statistical learning theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号