首页 | 本学科首页   官方微博 | 高级检索  
     


XPN-FMS: A CAD tool for FMS modeling, analysis, animation, and simulation using Petri nets and X window
Authors:Daniel Y Chao and David T Wang
Affiliation:(1) Department of Management Information Systems, National Cheng Chi University, Taipei, Taiwan, ROC;(2) Institute of Integrated Systems Research, Department of Computer and Information Science, New Jersey Institute of Technology, 07102 Newark, NJ, USA
Abstract:We propose a CAD tool, XPN-FMS, which is primarily based on a unique Petri net (PN) synthesis method, called the knitting technique, developed by the authors. Petri net theory has been applied to specification, validation, performance analysis, control code generation, and simulation for manufacturing systems. The analysis of flexible manufacturing systems (FMSs) based on PNs suffers from the complexity problem of reachability analysis (Peterson, 1981). CAD tools are urgently needed. There is no existing CAD tool for FMSs as comprehensive as XPN-FMS, in the sense that the latter integrates the functions of drawing, analysis, reduction (Chao and Wang, 1992; Murata and Koh, 1980), synthesis, property queries, and animation of FMS operations in one software package. Using the X window graphical interface and animation, XPN-FMS makes the modeling and analysis of an FMS visualizable and easy to understand and manipulate. It lets a user draw the factory layout of an FMS on the screen of a monitor using the supplied tools. A corresponding PN model can also be drawn on the monitor screen. XPN-FMS can animate and simulate the overall operating process of the FMS. It is useful for FMS specification, validation, and exploration of different design alternatives, status monitoring, and control. Using XPN-FMS with various inputs and comparing the resulting outputs, the user can determine how to improve efficiency, reduce cost, and pinpoint bottlenecks. For the PN models of FMSs that are decision free, we extend the theory and algorithm of a unique matrix-based method (Chao and Wang, 1993b) to search for subcritical loops (including types A and B) and to support scheduling and dealing with transition periods. XPN-FMS implements this extended method to find the minimum cycle time, critical loop, subcritical loops, next critical loop, and scheduling ranges to avoid the transient period for static scheduling. This is implemented in XPN-FMS for the input sequence control.This project is partially funded by NJIT's Separately Budgeted Research Program. Portions of this article were presented in Chao, Chen, Wang, and Zhou (1992),Proceedings of the 1992 IEEE International Conference on Systems, Man, and Cybernetics, Chicago, Illinois, October 1992. The former name of the first author, which has appeared in some of his earlier publications, was Yuh Yaw.
Keywords:Petri net  FMS  modeling  simulation  tool  analysis  animation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号