Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without |
| |
Authors: | JM Gilbert HB Greenberg |
| |
Affiliation: | Departments of Microbiology and Immunology and of Medicine, Division of Gastroenterology, Stanford University School of Medicine, Stanford, California 94305, USA. jgilbert@apollo.stanford.edu |
| |
Abstract: | We recently described our finding that recombinant baculovirus-produced virus-like particles (VLPs) can induce cell-cell fusion similar to that induced by intact rotavirus in our assay for viral entry into tissue culture cells (J. M. Gilbert and H. B. Greenberg, J. Virol. 71:4555-4563, 1997). The conditions required for syncytium formation are similar to those for viral penetration of the plasma membrane during the course of viral infection. This VLP-mediated fusion activity was dependent on the presence of the outer-layer proteins, viral protein 4 (VP4) and VP7, and on the trypsinization of VP4. Fusion activity occurred only with cells that are permissive for rotavirus infection. Here we begin to dissect the role of VP4 in rotavirus entry by examining the importance of the precise trypsin cleavage of VP4 and the activation of VP4 function related to viral entry. We present evidence that the elimination of the three trypsin-susceptible arginine residues of VP4 by specific site-directed mutagenesis prevents syncytium formation. Two of the three arginine residues in VP4 are dispensable for syncytium formation, and only the arginine residue at site 247 appears to be required for activation of VP4 functions and cell-cell fusion. Using the recombinant VLPs in our syncytium assay will aid in understanding the conformational changes that occur in VP4 involved in rotavirus penetration into host cells. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|