首页 | 本学科首页   官方微博 | 高级检索  
     

光伏阵列故障类型的改进型RBF神经网络识别算法
作者姓名:王福忠  裴玉龙
作者单位:河南理工大学电气工程与自动化学院
基金项目:国家自然科学基金资助项目(61405055);河南省产学研基金资助项目(132107000027)
摘    要:光伏阵列是光伏系统中非常重要的组成部分。传统的BP神经网络诊断算法有着精度低、收敛速度慢等缺点,为了精确地诊断出光伏阵列内部的故障位置及其类型,通过分析阵列开路、短路、老化、阴影和电池板裂片5种故障,提出了一种改进型RBF神经网络的故障诊断识别算法。首先,建立RBF神经网络的光伏阵列故障诊断模型,确定基于遗传算法的故障模型隐层中心的确定方法,然后针对基于粒子群优化算法的网络模型进行自适应权重寻优的仿真实验。最后,将优化的算法与传统RBF神经网络算法进行对比。结果表明:该优化算法不仅可以有效地诊断光伏阵列的故障类型,还可以提高故障诊断的准确率。

关 键 词:光伏阵列  故障诊断  RBF神经网络  粒子群优化算法  遗传算法
收稿时间:2017-05-13
修稿时间:2018-07-21
本文献已被 CNKI 等数据库收录!
点击此处可从《电源学报》浏览原始摘要信息
点击此处可从《电源学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号