首页 | 本学科首页   官方微博 | 高级检索  
     


Crop discrimination based on polarimetric correlation coefficients optimization for PolSAR data
Authors:Si-Wei Chen  Yong-Zhen Li  Xue-Song Wang
Affiliation:1. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, Chinachenswnudt@163.com;3. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, China
Abstract:Crop discrimination is a necessary step for most agricultural monitoring systems. Radar polarimetric responses from various crops strongly relate to the types and orientations of the local scatterers, which makes the discrimination still difficult using the polarimetric synthetic aperture radar (PolSAR) technique. This work provides a new approach by investigating and utilizing the characteristics of polarimetric correlation coefficients in the rotation domain along the radar line of sight. The theoretical basis lies in that polarimetric correlation coefficients can reflect the different responses and can be enhanced at different levels for various land-cover types with suitable rotation angles in the rotation domain. In this vein, a polarimetric correlation coefficient optimization framework is established and new polarimetric features are extracted therein. Demonstration with multi-frequency (P-, L-, and C-bands) airborne synthetic aperture radar (AIRSAR) PolSAR data over crop areas validates that polarimetric correlation coefficients are crop dependent and the optimized polarimetric correlation coefficient parameters can better discriminate them. Then, a crop discrimination scheme is proposed using the derived polarimetric features. A flow chart for the optimal discrimination feature set selection and determination is provided and is validated by the real data with seven typical crop types. All these crop types are successfully discriminated for the P- and L-band data, whereas only two types of crops are slightly overlapped in the feature space for the C-band data. Experimental studies demonstrate the efficiency and potential of the established methodology.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号