首页 | 本学科首页   官方微博 | 高级检索  
     


Testing for a single outlier from a general linear regression
Authors:JH Ellenberg
Abstract:Several authors have considered the problem of detection of outliers from the general linear model Y = Xbeta + mu. Ellenberg [1973] among others, has advocated use of a detection method which involves examination of the set of internally standardized least squares residuals. Mickey [1974] and Snedecor and Cochran [1968], apparently concerned about the usefulness of an outlier detection method which is based on residual estimates that themselves are biassed by the presence of the outlier, have proposed two other alternatives. It is shown that the three approaches are exactly equivalent. A detection procedure is described which uses as its test statistic the maximum of the internally standardized least squares residuals, and upper and lower bounds for the percentage points of the test statistic are given by Bonferroni inequalities. The computations required to obtain these approximate percentage points are illustrated in a numerical example. Finally, a brief simulation study of the performance of the procedure illustrates that the power of the test can be influenced by the position of the outlier vis-a-vis the structure of the design matrix X.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号