首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊神经网络的交通干线分层递阶控制
引用本文:史强,贾磊. 基于模糊神经网络的交通干线分层递阶控制[J]. 控制工程, 2006, 13(6): 543-546
作者姓名:史强  贾磊
作者单位:山东大学,控制科学与控制工程学院,山东,济南,250061;山东大学,控制科学与控制工程学院,山东,济南,250061
摘    要:针对城市交通干线协调控制的要求,提出了利用模糊神经网络分层递阶控制的方法。采用两层结构,第一层为控制层。针对单个路口,对下一时间段内路口各个方向的车流量进行预测。并在此基础上计算出下一时间段内各个路口的周期、相序、各个方向上的绿信比;第二层是协调层,综合主干方向的车流状况及各个路口的情况,采用模糊神经网络对各个路口的周期、相位及主干方向的绿信比进行调整。仿真结果表明,该方法优于定时控制,达到了减少车辆的停车次数和延误时间的目的。

关 键 词:交通干线  分层递阶控制  模糊神经网络  协调控制  智能交通
文章编号:1671-7848(2006)06-0543-04
收稿时间:2005-09-16
修稿时间:2005-11-20

Traffic Control for Trunk Roads Based on Fuzzy Neural Network and Hierarchy Control
SHI Qiang,JIA lei. Traffic Control for Trunk Roads Based on Fuzzy Neural Network and Hierarchy Control[J]. Control Engineering of China, 2006, 13(6): 543-546
Authors:SHI Qiang  JIA lei
Affiliation:School of Control Science and Engineering, Shandong University, Jinan 250061, China
Abstract:The fuzzy neural network and hierarchy control is used to solve the problem of traffic control for the trunk roads. The first layer of the network is manipulative layer that forecast the traffic flow of single intersection, and based on that, the signal cycle, phase and split of each direction are calculated. The second layer is coordinated layer. Fuzzy neural network is used to correct the cycle, phase and split of intersections by considering the traffic of trunk roads and intersections. The simulation result shows that the proposed method can reduce the vehicle stop times and delay time.
Keywords:traffic trunk road   hierarchy control   fuzzy neural network   coordinated control   intelligent traffic system
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号