首页 | 本学科首页   官方微博 | 高级检索  
     


PEM fuel cell reaction kinetics in the temperature range of 23-120 °C
Authors:Chaojie Song  Jian Lu Zhang  Haijiang Wang  Scott McDermid  Paul Kozak
Affiliation:a Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, Canada V6T 1W5
b R&D, Ballard Power Systems, Inc., Burnaby, BC, Canada V5J 5J9
Abstract:The performance of a Nafion 112 based proton exchange membrane (PEM) fuel cell was tested at a temperature range from 23 °C to 120 °C. The fuel cell polarization curves were divided into two different ranges based on current density, namely, <0.4 A/cm2 and >0.4 A/cm2, respectively. These two ranges were treated separately with respect to electrode kinetics and mass transfer. In the high current density range, a linear increase in membrane electrode assembly (MEA) power density with increasing temperature was observed, indicating the advantages of high temperature operation.Simulation based on electrode reaction kinetic theory, experimental polarization curves, and measured cathodic apparent exchange current densities all gave temperature dependent apparent exchange current densities. Both the calculated partial pressures of O2 and H2 gas in the feed streams and the measured electrochemical Pt surface areas (EPSAs) decrease with increasing temperature. They were also used to obtain the intrinsic exchange current densities. A monotonic increase of the intrinsic exchange current densities with increasing temperature in the range of 23-120 °C was observed, suggesting that increasing the temperature does promote intrinsic kinetics of fuel cell reactions.There are two sets of cathode apparent exchange current densities obtained, one set is for the low current density range, and the other is for the high current density range. The different values of cathode current densities in the two current density ranges can be attributed to the different states of the cathode Pt catalyst surface. In the low current density range, the cathode catalyst surface is a Pt/PtO, and in the high current density range, the catalyst surface becomes pure Pt.
Keywords:Temperature effect  High temperature PEM fuel cells  O2 reduction  H2 oxidation  Cathode and anode electrode kinetics  Exchange current density  Electrochemical Pt surface area (EPSA)  Reaction activation energy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号