首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes
Authors:Jernej Zupanc  Damjana Drobne  Barbara Drasler  Janez Valant  Ales Iglic  Veronika Kralj-Iglic  Darko Makovec  Michael Rappolt  Barbara Sartori  Ksenija Kogej
Affiliation:1. Faculty of Computer and Information Science, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia;2. Biotechnical Faculty, Department of Biology, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia;3. Centre of Excellence in Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova 39, SI-1000 Ljubljana, Slovenia;4. Centre of Excellence in Nanoscience and Nanotechnology (CO Nanocenter), Jamova 39, SI-1000 Ljubljana, Slovenia;5. Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana, Slovenia;6. Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Lipiceva 2, SI-1000 Ljubljana, Slovenia;7. Institute Jozef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia;8. Institute of Biophysics and Nanosystems Research, Austrian Academy of Science, c/o Sincrotrone Trieste, 34149 Basovizza, Italy;9. Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, P.O. Box 537, SI-1000 Ljubljana, Slovenia
Abstract:There are some molecular dynamic simulations but a paucity of experimental evidence of the effects of C-60 fullerene on lipid bilayers. The aim of this study is to assess the potential for disruption of the lipid bilayer by C-60 suspended in water. We selected a C-60 suspension that has previously been shown to provoke cell membrane destabilisation in vivo. Electromobility measurements show significant negative surface charge on the C-60 nanoparticles suspended in a glucose solution and a zeta potential of ?26 mV. The prevalent C-60 clusters have hydrodynamic radii of approximately 2 nm. Phase contrast microscopy and computer aided image analysis results show that C-60 causes shape transformations and rupture of unilamellar phospholipid vesicles, indicative of changes in their average mean curvature. Small-angle X-ray scattering reveals that C-60 provokes disruptions of external membranes of multilamellar vesicles only after freeze and thaw cycles. Here, the liposomes undergo breakage and annealing steps which increase the probability for fullerenes to insert into the MLVs. Our experimental findings confirm the potential of C-60 to reconstruct lipids in biological membranes. This research enhances our understanding of the impact of engineered nanoparticles on cell membranes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号