首页 | 本学科首页   官方微博 | 高级检索  
     

局部保护降维与高斯混合模型的高光谱图像分类
作者姓名:叶珍  白璘
作者单位:(长安大学 电子与控制工程学院,西安 710064)
基金项目:国家自然科学基金项目,中央高校基本科研业务费专项资金项目
摘    要:高光谱图像具有高谱间分辨率和低空间分辨率的特点,传统的分类方法难以得到较高的分类精度。针对该问题,该文研究了两种局部保护降维法-局部保护投影(LPP)和局部保护非负矩阵分离(LPNMF)对高光谱图像降维,这两种方法能很好地保护输入空间相邻像素间的局部特征;由于高光谱图像各类间的统计分布多为复杂的多模型结构,文中采用高斯混合模型(GMM)分类器对降维后的数据进行分类。实验结果表明,将局部保护降维与高斯混合模型相结合的高光谱图像分类算法不但在小样本情况下能有效地提高分类精度,而且在背景像素混合的情况下和高斯白噪声环境中具有一定的鲁棒性。

关 键 词:高斯混合模型  局部保护投影  局部保护非负矩阵分离  高光谱图像分类
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《工业仪表与自动化装置》浏览原始摘要信息
点击此处可从《工业仪表与自动化装置》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号