首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于并行残差卷积神经网络的多种树叶分类
作者姓名:
魏书伟
曾上游
周悦
王新娇
作者单位:
广西师范大学电子工程学院
基金项目:
国家自然科学基金资助项目(11465004);;广西研究生教育创新计划项目(XYCSZ2019073);
摘 要:
树叶分类识别对于鉴定新的或者稀缺树种至关重要,采用卷积神经网络算法可以实现对树叶图像特征的自动提取,减少繁琐的人工成本,实现使用人工智能的方法来分类树叶。实验采用一种并行残差卷积神经网络和一种加入残差学习的传统Alexnet网络在制作的30种分类树叶的数据集上测试效果并作对比。以上两种方式分别比传统Alexnet网络提高了15.36%和9.36%,而且使网络更轻量化,最高准确率为90.67%,为树种识别研究提供了有效的分类方法。
关 键 词:
树叶分类
卷积神经网络
残差学习
图像特征提取
批量归一化
测试效果对比
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号