首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于深度强化学习的智能网联车匝道合并策略
作者姓名:
陈广福
作者单位:
广东工业大学
摘 要:
针对高速公路智能网联汽车(CAV)匝道合并时的协同决策问题,提出了一种基于近端策略优化(PPO)改进的协作深度强化学习算法(C-PPO)。首先,基于强化学习构建CAV匝道合并场景下的马尔科夫决策过程(MDP)模型,接着设计了一个新颖的协作机制,即在策略更新过程中的多个时期动态考虑匝道附近CAV的策略更新信息,这一过程可以协调地调整优势值以实现匝道合并车辆之间的协作。实验结果表明,与传统的PPO算法相比,C-PPO算法在匝道合并问题中的效果显著优于基于PPO和ACKTR等主流算法。
关 键 词:
深度强化学习
智能网联车
匝道合并
近端策略优化
马尔科夫决策过程
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号