首页 | 本学科首页   官方微博 | 高级检索  
     


Low-rank estimation of higher order statistics
Authors:Andre   T.F. Nowak   R.D. Van Veen   B.D.
Affiliation:Dept. of Electr. & Comput. Eng., Wisconsin Univ., Madison, WI;
Abstract:Low-rank estimators for higher order statistics are considered in this paper. The bias-variance tradeoff is analyzed for low-rank estimators of higher order statistics using a tensor product formulation for the moments and cumulants. In general, the low-rank estimators have a larger bias and smaller variance than the corresponding full-rank estimator, and the mean-squared error can be significantly smaller. This makes the low-rank estimators extremely useful for signal processing algorithms based on sample estimates of the higher order statistics. The low-rank estimators also offer considerable reductions in the computational complexity of such algorithms. The design of subspaces to optimize the tradeoffs between bias, variance, and computation is discussed, and a noisy input, noisy output system identification problem is used to illustrate the results
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号