首页 | 本学科首页   官方微博 | 高级检索  
     


An optimal solution for magnetohydrodynamic nanofluid flow over a stretching surface with constant heat flux and zero nanoparticles flux
Authors:Hayat  Tasawar  Hussain  Zakir  Alsaedi  Ahmed  Muhammad  Taseer
Affiliation:1.Department of Mathematics, Quaid-I-Azam University, Islamabad, 44000, Pakistan
;2.Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
;
Abstract:

This article examines the hydromagnetic three-dimensional flow of viscous nanoliquid. A bidirectional linear stretching surface has been used to create the flow. Novel features regarding Brownian motion and thermophoresis have been studied by employing Buongiorno model to examine the slip velocity of nanoparticle. Viscous liquid is electrically conducting subject to uniform applied magnetic field. Problem formulation in boundary-layer region is performed for low magnetic Reynolds number. Simultaneous effects of constant heat flux and zero nanoparticles flux conditions are utilized at boundary. Appropriate transformations correspond to the strongly nonlinear ordinary differential expressions. The resulting nonlinear systems have been solved through the optimal homotopy analysis method. Graphs have been sketched in order to analyze that how the temperature and concentration profiles are affected by various physical parameters. Further the coefficients of skin-friction and heat transfer rate have been numerically computed and discussed. Our findings show that the temperature distribution has a direct relationship with the magnetic parameter. Moreover, the temperature distribution and thermal boundary-layer thickness are higher for hydromagnetic flow in comparison with the hydrodynamic flow.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号