首页 | 本学科首页   官方微博 | 高级检索  
     


Car assembly line fault diagnosis based on triangular fuzzy support vector classifier machine and particle swarm optimization
Authors:Qi Wu  Zhonghua Ni
Affiliation:1. Department of Computer Science and Technology, Tongji University, Shanghai 201804, China;2. Key Laboratory of Embedded System and Service Computing (Tongji University), Ministry of Education, Shanghai 201804, China
Abstract:
This paper presents a new version of fuzzy support vector classifier machine to diagnose the nonlinear fuzzy fault system with multi-dimensional input variables. Since there exist problems of finite samples and uncertain data in complex fuzzy fault system modeling, the input and output variables are described as fuzzy numbers. Then by integrating the fuzzy theory and v-support vector classifier machine, the triangular fuzzy v-support vector regression machine (TF v-SVCM) is proposed. To seek the optimal parameters of TF v-SVCM, particle swarm optimization (PSO) is also applied to optimize parameters of TF v-SVCM. A diagnosing method based on TF v-SVCM and PSO are put forward. The results of the application in fault system diagnosis confirm the feasibility and the validity of the diagnosing method. The results of application in fault diagnosis of car assembly line show the hybrid diagnosis model based on TF v-SVCM and PSO is feasible and effective, and the comparison between the method proposed in this paper and other ones is also given, which proves this method is better than standard v-SVCM.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号