Elastic-plastic analysis of frictionless contact at interfacial crack tips |
| |
Authors: | E. Zywicz D. M. Parks |
| |
Affiliation: | (1) Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA;(2) Present address: Lawrence Livermore National Laboratory, 94550 Livermore, CA, USA |
| |
Abstract: | ![]() The asymptotic elastic behavior of an interfacial crack occurring between two dissimilar isotropic media is reviewed. Distinct solutions, based on differing assumptions regarding crack-face boundary conditions, can be generated. The assumption of traction-free faces generally leads to oscillatory singular asymptotic fields which mathematically cause crack-face interpenetration, an inconsistency which can be alleviated by alternatively assuming asymptotic frictionless contact. For predominant tensile loading, the elastically-calculated ratio of contact length to crack size is typically very small, but may become appreciable when shear loading is applied. In either case, the singular crack-tip stresses cannot be sustained in materials capable of limited plastic flow, and small scale yielding (SSY) should be considered. In an extension of previous work [11], we identify conditions for SSY within surrounding dominant elastic regions of both traction-free and frictionless contact types. For the latter case, approximate closed form expressions for the plastic zone size and shape are obtained as the locus of points where the elastically-calculated Mises stress equals the tensile yield strength, % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS% baaSqaaiaadMhacaWGZbaabeaaaaa!39D2![sigma _{ys} ]. The maximum extent of this plastic zone is approximately % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaadU% eadaqhaaWcbaGaaeysaiaabMeaaeaacaWGJbaaaOGaai4laiaaikda% cqaHdpWCdaqhaaWcbaGaamyEaiaadohaaeaacaaIYaaaaaaa!4042![3K_{{text{II}}}^c /2sigma _{ys}^2 ], where KIIc is the closed crack-tip bimaterial stress intensity factor. Precise SSY numerical calculations for an elastic/perfectly-plastic material atop a rigid substrate indicate that the asymptotic stress field in the plastically-deforming material is composed of two fan regions and two constant state regions. Within the plastic zone, the interfacial and crack-face tractions asymptotically reach constant values. Compressive crack-face tractions persist even when contained inelastic crack-tip deformation is included. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|