首页 | 本学科首页   官方微博 | 高级检索  
     

基于矢量量化和查找表的改进DTW语音识别方法
引用本文:李宏言,盛利元,陈妮. 基于矢量量化和查找表的改进DTW语音识别方法[J]. 计算机工程与设计, 2007, 28(19): 4702-4704,4737
作者姓名:李宏言  盛利元  陈妮
作者单位:中南大学,物理科学与技术学院,湖南,长沙,410083;中南大学,物理科学与技术学院,湖南,长沙,410083;中南大学,物理科学与技术学院,湖南,长沙,410083
摘    要:针对传统DTW语音识别方法的运算量和存储空间大的缺陷,提出一种基于矢量量化和查找表的改进DTW方法.方法利用矢量量化操作将连续特征矢量空间转化成离散矢量空间,以降低模式存储空间,在此基础上建立矢量失真测度表,并通过Hash查表方式实现了地址空间的精确定位,从而省去了动态规划操作造成的大量距离测度计算,极大提高了识别匹配速度.理论分析和实验结果证明了改进方法的有效性.同时为研究方便,在Matlab平台下设计和开发了DTW实时语音识别系统.

关 键 词:语音识别  动态时间规整  矢量量化  查找表  哈希函数
文章编号:1000-7024(2007)19-4702-03
修稿时间:2006-10-12

Improved DTW speech recognition method based on vector quantization and search table
LI Hong-yan,SHENG Li-yuan,CHEN Ni. Improved DTW speech recognition method based on vector quantization and search table[J]. Computer Engineering and Design, 2007, 28(19): 4702-4704,4737
Authors:LI Hong-yan  SHENG Li-yuan  CHEN Ni
Affiliation:School of Physics Science and Technology, Central South University, Changsha 410083, China
Abstract:In order to solve the disadvantages of traditional DTW speech recognition method with large computations and storages,an improved DTW based on vector quantization and search table is proposed.Firstly,the continuous feature vector space is translated into discrete form using vector quantization,with the purpose of reducing the model storage,and then the distortion table is built and accurate positioning of address space is realized by Hash search function,as a result,it can avoid lots of distortion computations cased by dynamic programming and largely increase the speed for recognition process.The theoretical analysis and experiment results prove that the im-proved method is effective.At last,a DTW based real-time recognition system under Matlab platform is developed.
Keywords:speech recognition  dynamic time warping  vector quantization  search table  hash function
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号