首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波分解和SVM的城市大气污染浓度预测
引用本文:陈伟,吴介军,段渭军. 基于小波分解和SVM的城市大气污染浓度预测[J]. 现代电子技术, 2011, 34(13): 145-148
作者姓名:陈伟  吴介军  段渭军
作者单位:1. 西北工业大学自动化学院,陕西西安,710072
2. 西北工业大学电子信息学院,陕西西安,710072
摘    要:使用一种结合小波分解和支持向量机的方法建立城市大气污染物浓度预测模型。首先将大气污染物浓度数据序列小波分解和重构为不同频段的分解序列,然后对各分解序列使用不同的模型进行预测,最后将各分解序列的预测结果合成为浓度的最终预测结果。实验结果表明,该模型的预测精度优于RBF神经网络模型及一般支持向量机模型。

关 键 词:小波分解  支持向量机  神经网络  大气污染预测

Model of Urban Air Pollution Concentration Forecast Based on Wavelet Decomposition and Support Vector Machine
CHEN Wei,WU Jie-jun,DUAN Wei-jun. Model of Urban Air Pollution Concentration Forecast Based on Wavelet Decomposition and Support Vector Machine[J]. Modern Electronic Technique, 2011, 34(13): 145-148
Authors:CHEN Wei  WU Jie-jun  DUAN Wei-jun
Affiliation:CHEN Wei1,WU Jie-jun1,DUAN Wei-jun2(1.College of Automation,Northwestern Polytechnical University,Xi'an 710072,China,2.College of Electronics And Information,China)
Abstract:A forecasting model of air pollutant concentration in urban areas was established in combination with a method of wavelet transform and support vector machine.First,series of air pollutant concentrations were decomposed into several different frequency decomposed series by the wavelet decomposition and reconstruction.Secondly,the decomposed series were predicted with different independent prediction models.Finally,the predicted results from every decomposition series were integrated as the final prediction ...
Keywords:wavelet decomposition  support vector machine  neural network  air pollution forecast  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号