首页 | 本学科首页   官方微博 | 高级检索  
     


A comprehensive study of hot carrier stress-induced drain leakagecurrent degradation in thin-oxide n-MOSFETs
Authors:Tahui Wang Lu-Ping Chiang Nian-Kai Zous Charng-Feng Hsu Li-Yuan Huang Tien-Sheng Chao
Affiliation:Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu;
Abstract:The mechanisms and characteristics of hot carrier stress-induced drain leakage current degradation in thin-oxide n-MOSFETs are investigated. Both interface trap and oxide charge effects are analyzed. Various drain leakage current components at zero Vgs such as drain-to source subthreshold leakage, band-to-band tunneling current, and interface trap-induced leakage are taken into account. The trap-assisted drain leakage mechanisms include charge sequential tunneling current, thermionic-field emission current, and Shockley-Read-Hall generation current. The dependence of drain leakage current on supply voltage, temperature, and oxide thickness is characterized. Our result shows that the trap-assisted leakage may become a dominant drain leakage mechanism as supply voltage is reduced. In addition, a strong oxide thickness dependence of drain leakage degradation is observed. In ultra-thin gate oxide (30 Å) n-MOSFETs, drain leakage current degradation is attributed mostly to interface trap creation, while in thicker oxide (53 Å) devices, the drain leakage current exhibits two-stage degradation, a power law degradation rate in the initial stage due to interface trap generation, followed by an accelerated degradation rate in the second stage caused by oxide charge creation
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号