首页 | 本学科首页   官方微博 | 高级检索  
     

基于互信息多步骤优化的医学图像配准
引用本文:施颖琦,顾力栩. 基于互信息多步骤优化的医学图像配准[J]. 计算机工程, 2006, 32(22): 187-188
作者姓名:施颖琦  顾力栩
作者单位:上海交通大学计算机系,上海,200240
摘    要:提出了一种新的基于互信息(Mutual Information, MI)的多步骤优化的配准方法。计算输入图像的梯度值,减少了图像的内在信息而使轮廓更为清晰。设计了多步骤的配准框架,优化了配准的收敛过程,使用完整的图像进行有限次的传统配准方法的微调,以实现高精度。为了验证该方法的有效性,分别使用单模、多模和时间序列的方法对临床医学数据进行了实验,与传统的MI配准方法相比,基于互信息的多步骤优化的配准方法具有更高的有效性和精确度。

关 键 词:互信息  医学图像配准  梯度图像  多步骤优化
文章编号:1000-3428(2006)22-0187-02
收稿时间:2005-12-31
修稿时间:2005-12-31

Optimized Multistage Medical Image Registration Method Based on Mutual Information
SHI Yingqi,GU Lixu. Optimized Multistage Medical Image Registration Method Based on Mutual Information[J]. Computer Engineering, 2006, 32(22): 187-188
Authors:SHI Yingqi  GU Lixu
Affiliation:Department of Computer Science, Shanghai Jiaotong University, Shanghai 200240
Abstract:This paper proposes an optimized multi-stage registration approach based on mutual information(MI).It calculates the gradient information of an input image as the reference image,which reduces the most inner details of the reference image but emphases its contour information.This pre-processing is proposed to resist the expenses of the normal MI registration.Then it designs a multistage transform in processing framework,which optimizes the convergence during the registration.An adjustment using the traditional MI with two complete images in limited iterations is employed.To demonstrate the effectiveness of this optimized multistage method,three case studies by using mono-,multi-modality and time series clinic datasets in the experiment is implemented.Compared with the common MI method,it is proved to be more efficient in better accuracy.
Keywords:Mutual information   Medical image registration   Gradient information   Multistage
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号