首页 | 本学科首页   官方微博 | 高级检索  
     

改性纳米坡缕石在油润滑中的减摩抗磨性能研究
引用本文:王陈向,闫嘉昕,范利锋,李帅强.改性纳米坡缕石在油润滑中的减摩抗磨性能研究[J].表面技术,2019,48(12):218-225.
作者姓名:王陈向  闫嘉昕  范利锋  李帅强
作者单位:内蒙古大学交通学院内蒙古自治区城市交通数据科学及应用工程技术研究中心,呼和浩特010070;内蒙古大学交通学院内蒙古自治区城市交通数据科学及应用工程技术研究中心,呼和浩特010070;中国平煤神马能源化工集团,河南平顶山467000
基金项目:内蒙古自治区自然科学基金项目(2017BS0502);内蒙古大学高层次人才引进项目(5165169,5185146)
摘    要:目的探索不同改性剂对纳米坡缕石的表面修饰效果,探究其在油润滑中的减摩抗磨和自修复机理。方法以油酸和钛酸酯作为改性剂对纳米坡缕石进行表面修饰,采用沉降法和透射电子显微镜(TEM)表征改性效果。将选择的改性剂和纳米坡缕石放入球磨机内在线修饰,制备成润滑油添加剂并将其超声分散于纯基础油150N中,形成润滑油分散体系。采用环-盘式摩擦磨损试验机对其摩擦性能进行考察,通过金相显微镜、扫描电子显微镜(SEM)、能量色散谱仪(EDS)进行微观结构观察与分析,并探究其润滑及自修复机理。结果采用油酸修饰的纳米坡缕石满足润滑油行业的要求,可显著改善润滑油的摩擦学性能。与纯基础油相比,当添加剂含量为3.0%时,45#钢摩擦副磨损表面形成了一层含多种元素的复合陶瓷自修复膜,平均摩擦系数降低了31.3%,磨损量减少了16.0%。结论纳米坡缕石添加剂可随油液流动智能吸附于摩擦界面,阻止摩擦副之间的直接接触,产生纳米滚珠效应。同时,随着界面滑动发生摩擦化学反应生成自修复膜,填补犁沟和划痕,在纳米滚珠和自修复膜共同作用下达到减摩抗磨的效果。

关 键 词:纳米坡缕石  表面改性  润滑油添加剂  减摩抗磨性能  自修复
收稿时间:2019/1/27 0:00:00
修稿时间:2019/12/20 0:00:00

Anti-friction and Anti-wear Performance of Modified Nano-palygorskite in Oil
WANG Chen-xiang,YAN Jia-xin,FAN Li-feng and LI Shuai-qiang.Anti-friction and Anti-wear Performance of Modified Nano-palygorskite in Oil[J].Surface Technology,2019,48(12):218-225.
Authors:WANG Chen-xiang  YAN Jia-xin  FAN Li-feng and LI Shuai-qiang
Affiliation:1.Inner Mongolia Engineering Research Center for Urban Transportation Data Science and Applications,Transportation Institute, Inner Mongolia University, Hohhot 010070, China,1.Inner Mongolia Engineering Research Center for Urban Transportation Data Science and Applications,Transportation Institute, Inner Mongolia University, Hohhot 010070, China,1.Inner Mongolia Engineering Research Center for Urban Transportation Data Science and Applications,Transportation Institute, Inner Mongolia University, Hohhot 010070, China and 1.Inner Mongolia Engineering Research Center for Urban Transportation Data Science and Applications,Transportation Institute, Inner Mongolia University, Hohhot 010070, China; 2.China Pingmeishenma Group, Pingdingshan 467000, China
Abstract:The work aims to investigate the modification effects of different modifiers on nano-palygorskite surface and explore their anti-friction and anti-wear performance and self-repairing mechanism in oil lubrication. Oleic acid and titanate were selected as the modifiers to modify the nano-palygorskite and the modification effect was evaluated by sedimentation experiments and transmission electron microscope (TEM). The pre-selected modifier and the nano-palygorskite were put in a ball millfor online modification to prepare lubricating oil additive. Then the nano-palygorskite additive was dispersed into base oil 150N through ultrasonic treatment to obtain the final lubricating oil dispersion. After that, the tribological properties of nano-palygorskite additive were tested by a ring-on-disk tribometer. The microstructure was observed and analyzed by metallographic microscope, scanning electronic microscope (SEM) and energy dispersive spectrometry (EDS), and the lubrication and self-repairing mechanisms were also explored. The nano-palygorskite modified by oleic acid could meet the requirements of the lubricant industry and significantly improved the tribological performance of lubricating oil. Specially, when 3.0wt.% of nano-palygorskite additive was introduced, the average friction coefficient and wear mass loss of 45# steel friction pair were reduced by 31.3% and 16.0% respectively, due to the formation of multiple elements-based composite ceramic self-repairing films. Nano-palygorskite additive can be intelligently adsorbed to the frictional interface along with the flowing oil and generates a nano-ball effect by avoiding the direct contact between friction pairs. Simultaneously, the friction-induced furrows and scratches are also filled by the self-repairing films during the interface sliding process. The nano-ball effect and the self-repairing film can work together to achieve the excellent friction-reducing and wear-resisting effect.
Keywords:nano-palygorskite  surface modification  lubricating oil additives  anti-friction and anti-wear property  self-repairing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《表面技术》浏览原始摘要信息
点击此处可从《表面技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号