首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of tensile deformation and failure in austenitic stainless steels: Part I - Temperature dependence
Authors:Jin Weon Kim
Affiliation:a Department of Nuclear Engineering, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea
b Oak Ridge National Laboratory, Material Science and Technology Division, P.O. Box 2008, MS-6138, Oak Ridge, TN 37831, United States
Abstract:This paper describes the temperature dependence of deformation and failure behaviors in the austenitic stainless steels (annealed 304, 316, 316LN, and 20% cold-worked 316LN) in terms of equivalent true stress-true strain curves. The true stress-true strain curves up to the final fracture were calculated from tensile test data obtained at −150 to 450 °C using an iterative finite element method. Analysis was largely focused on the necking and fracture: key parameters such as the strain hardening rate, equivalent fracture stress, fracture strain, and tensile fracture energy were evaluated, and their temperature dependencies were investigated. It was shown that a significantly high strain hardening rate was retained during unstable deformation although overall strain hardening rate beyond the onset of necking was lower than that of the uniform deformation. The fracture stress and energy decreased with temperature up to 200 °C and were nearly saturated as the temperature came close to the maximum test temperature 450 °C. The fracture strain had a maximum at −50 to 20 °C before decreasing with temperature. It was explained that these temperature dependencies of fracture properties were associated with a change in the dominant strain hardening mechanism with test temperature. Also, it was seen that the pre-straining of material has little effect on the strain hardening rate during necking deformation and on fracture properties.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号