首页 | 本学科首页   官方微博 | 高级检索  
     


A comparative thermodynamic analysis of samarium and erbium oxide based solar thermochemical water splitting cycles
Authors:Rahul R. Bhosale  Anand Kumar  Fares AlMomani  Ujjal Ghosh  Majeda Khraisheh
Affiliation:Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box-2713, Doha, Qatar
Abstract:This paper reports a thermodynamic comparison between the samarium and erbium oxide based solar thermochemical water splitting cycles. These cycles are a two-step process in which the metal oxide is first thermally reduced into the pure metal, and the produced metal can be used to split water to produce H2. The metal oxides can be reused for multiple cycles without consumption. The effect of water splitting temperature on various thermodynamic parameters which are essential to design the solar reactor system for the production of H2 via water splitting reaction using the samarium and erbium oxides is studied in detail. The total amount of solar energy needed for the thermal reduction of samarium and erbium oxides is estimated. The amount of heat energy released by the water splitting reactor is calculated. Also, the cycle and solar-to-fuel energy conversion efficiency for both cycles are determined by employing heat recuperation. Obtained results indicate that the efficiencies associated with these cycles are comparable to the previously studies thermochemical cycles. It is observed that higher water splitting temperature favors towards higher efficiencies. At constant thermal reduction temperature = 2280 K, by employing 50% heat recuperation, the solar-to-fuel energy conversion efficiency for the samarium cycle (30.98%) is observed to be higher than erbium cycle (28.19%).
Keywords:Hydrogen production  Solar energy  Samarium oxide  Erbium oxide  Thermodynamics  Water splitting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号