首页 | 本学科首页   官方微博 | 高级检索  
     


Conversion of hydrogen/carbon dioxide into formic acid and methanol over Cu/CuCr2O4 catalyst
Authors:Chao-Lung Chiang  Kuen-Song Lin  Hui-Wen Chuang  Chun-Ming Wu
Affiliation:1. Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung–Li District, Taoyuan 32003, Taiwan;2. National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
Abstract:Cu/CuCr2O4 catalysts were prepared by impregnation method at various calcination temperatures (300, 400, and 500 °C) and then reduced in H2 stream. The aggregated particles and decreasing surface area/pore volumes of the deactivated catalysts during HCOOH and CH3OH formations were also observed. Particularly, the EXAFS data showed that first shells of Cu atoms transforms from Cu–O to Cu–Cu after catalytic reactions, their bond distances and coordination numbers are quite different, respectively. It revealed that metallic Cu atoms are one of the important active species over catalyst surface at different reaction temperatures having many unoccupied binding sites for HCOOH and CH3OH formations. Additionally, the optimal calcination temperature for Cu/CuCr2O4 catalysts was demonstrated at 400 °C that attributed to its strongest acidity and basicity. The catalytic reactions in the duration of HCOOH and CH3OH preparation were proposed that were composed of HCOOH formation, CH3OH formation, and CH3OH decomposition happening at CuCr2O4, Cu, and CuO active sites, respectively. The highest CO2 conversion (14.6%), HCOOH selectivity/yield (87.8/12.8%), and TON/TOF values (4.19/0.84) were obtained at 140 °C and 30 bar in 5 h, respectively. Optimal rate constant (2.57 × 10?2 min?1) and activation energy (16.24 kJ mol?1) of HCOOH formation were evaluated by pseudo first-order model and Arrhenius equation, respectively.
Keywords:Carbon dioxide  Hydrogenation  Formic acid  Copper–chromium catalyst  EXAFS  XANES
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号