首页 | 本学科首页   官方微博 | 高级检索  
     

基于门控循环单元与主动学习的协同过滤推荐算法
引用本文:陈德蕾,王成,陈建伟,吴以茵. 基于门控循环单元与主动学习的协同过滤推荐算法[J]. 山东大学学报(工学版), 2020, 50(1): 21-27,48. DOI: 10.6040/j.issn.1672-3961.0.2019.411
作者姓名:陈德蕾  王成  陈建伟  吴以茵
作者单位:华侨大学计算机科学与技术学院,福建 厦门 361021;圣地亚哥州立大学数学与统计学院,加利福尼亚州 圣地亚哥92182
基金项目:福建省引导性科技计划资助项目(2017H01010065)
摘    要:针对传统协同过滤推荐算法存在无法反映用户短时兴趣的问题,提出一种基于门控循环单元(gated recurrent unit, GRU)神经网络与主动学习的协同过滤推荐算法。在采用GRU神经网络的基础上,将数据进行时序化处理,反映用户兴趣变化,并利用主动学习动态采样数据中的高质量的数据进行GRU神经网络的训练,使模型快速建立。在MovieLens1M数据集上的试验结果表明:加入主动学习的GRU模型的推荐算法比基于用户的协同过滤推荐算法(user-based collaborative filtering, UCF)、基于马尔科夫模型的协同过滤推荐算法(markov chain, MC)、基于隐语义模型的协同过滤推荐算法(latent factor model, LFM)算法有更高的短时预测率、召回率、项目覆盖率以及用户覆盖数,能够有效预测用户短时兴趣,提升精度,发掘长尾物品,且与原始GRU模型相比能够以更少的迭代次数达到相同效果。

关 键 词:协同过滤  门控循环单元  主动学习  深度学习  时序化数据
收稿时间:2019-01-03

GRU-based collaborative filtering recommendation algorithm with active learning
Delei CHEN,Cheng WANG,Jianwei CHEN,Yiyin WU. GRU-based collaborative filtering recommendation algorithm with active learning[J]. Journal of Shandong University of Technology, 2020, 50(1): 21-27,48. DOI: 10.6040/j.issn.1672-3961.0.2019.411
Authors:Delei CHEN  Cheng WANG  Jianwei CHEN  Yiyin WU
Affiliation:1. College of Computer Science and Technology, Huaqiao University, Xiamen 361021, Fujian, China2. Department of Mathematics and Statistics, San Diego State University, San Diego 92182, CA, USA
Abstract:The traditional collaborative filtering recommendation algorithm failed to reflect short-term user interest. In order to reflect the short-term interests of users better, a collaborative filtering recommendation algorithm based on Gated Recurrent Unit (GRU) neural network with active learning was proposed. Based on the GRU neural network, the algorithm processed the data into time-series data to reflect the change of the user's interest and used active learning to sample high-quality data dynamically for accelerating the training of GRU neural network. The result on MovieLens1M dataset showed that the GRU model with active learning could obtain higher short-term prediction success rate, recall rate, item coverage, and user coverage compared with the user-based collaborative filtering method (UCF), the markovian chain model-based collaborative filtering method (MC) and the matrix factory-based collaborative filtering method (LFM), so it could effectively predict the short-term interest of users, improve the accuracy, discover the long-tail items. Meanwhile, it could achieve the same effect with fewer iterations compared with the original GRU model.
Keywords:collaborative filtering  gated recurrent unit  active learning  deep learning  time-series data  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号