首页 | 本学科首页   官方微博 | 高级检索  
     

基于归一化小波能量系数的管道安全识别算法
引用本文:赵伟,曾周末,靳世久,张宇. 基于归一化小波能量系数的管道安全识别算法[J]. 纳米技术与精密工程, 2012, 0(2): 147-153
作者姓名:赵伟  曾周末  靳世久  张宇
作者单位:精密测试技术与仪器国家重点实验室(天津大学),天津300072
基金项目:国家自然科学基金青年基金资助项目(51004076);天津市应用基础及前沿技术研究计划资助项目(10JCYBJC07100).
摘    要:
针对管道泄漏检测系统存在一定误报率的问题,提出一种基于归一化小波能量系数的油气管道安全识别算法.首先提出最佳母小波选择标准,以现场数据为基础选取最佳母小波,然后提取归一化小波能量系数的最大值作为特征量,最后利用Fisher分类器对压力数据进行识别,判断管道是否处于安全状况.利用现场数据对该方法进行验证分析,结果表明该算法识别正确率较高,实用性好,且可以降低误报率.

关 键 词:最佳母小波  小波能量系数  泄漏  识别算法  管道安全

Recognition Algorithm Based on Normalized Wavelet Energy Coefficients for the Safety of Pipeline
ZHAO Wei,ZENG Zhou-mo,JIN Shi-jiu,ZHANG Yu. Recognition Algorithm Based on Normalized Wavelet Energy Coefficients for the Safety of Pipeline[J]. Nanotechnology and Precision Engineering, 2012, 0(2): 147-153
Authors:ZHAO Wei  ZENG Zhou-mo  JIN Shi-jiu  ZHANG Yu
Affiliation:(State Key Laboratory of Precision Measuring Technology and Instruments( Tianjin University), Tianjin 300072, China)
Abstract:
A recognition algorithm based on normalized wavelet energy coefficients for the safety of pipe- line was proposed to solve the problem of false alarm rate existing in the pipeline leak detection system. First, the best mother wavelet selection criteria were put forward. Then the best mother wavelet was se- lected based on field data, and the maximum normalized wavelet energy coefficient was extracted as fea- ture vector. Finally, the feature vector was identified by the Fisher classifier to determine whether the pipeline is in a safe condition. Experimental data obtained from the oil field were used to evaluate the method. The results show that it is an effective recognition algorithm for reducing false alarm rate, with high accuracy and good real-time performance.
Keywords:the best mother wavelet  wavelet energy coefficient  leakage  recognition algorithm  safety of pipeline
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号