首页 | 本学科首页   官方微博 | 高级检索  
     

基于回归分析的全体与类样本分类器的比较研究
引用本文:张楠,杨健. 基于回归分析的全体与类样本分类器的比较研究[J]. 计算机应用与软件, 2011, 28(11)
作者姓名:张楠  杨健
作者单位:南京理工大学计算机科学与技术学院 江苏南京210094
摘    要:
针对基于L1范数的Lasso回归与基于L2范数的Ridge回归模型,分别讨论两种分类器的设计方法,即基于Lasso回归的全体与类样本分类器和基于Ridge回归的全体与类样本分类器。分别在2个大样本数据库与2个小样本数据库对所给出的方法进行比较研究与分析,结果表明基于全体样本的分类器更适合小样本问题,而基于类样本的分类器更适合大样本问题。

关 键 词:回归分析  分类器  小样本问题  大样本问题  

COMPARATIVE STUDY ON LINEAR REGRESSION BASED POPULATION AND CLASS SAMPLE CLASSIFIER
Zhang Nan,Yang Jian. COMPARATIVE STUDY ON LINEAR REGRESSION BASED POPULATION AND CLASS SAMPLE CLASSIFIER[J]. Computer Applications and Software, 2011, 28(11)
Authors:Zhang Nan  Yang Jian
Affiliation:Zhang Nan Yang Jian (School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)
Abstract:
By examining L1-paradigm based Lasso regression and L2-paradigm based Ridge regression models,the design methods of two classifiers,i.e.,Lasso regression based population and class sample classifier,and Ridge regression based population and class sample classifier,are separately discussed.Comparative study and analysis are carried out separately upon 2 large sample size databases and 2 small sample size databases.Results show that population sample based classifier suits better for small sample size problem...
Keywords:Regression analysis  Classifier  Small sample size problem  Large sample size problems  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号