首页 | 本学科首页   官方微博 | 高级检索  
     

改进的遗传蚁群混合算法在 TSP 中的应用
引用本文:蒋腾旭. 改进的遗传蚁群混合算法在 TSP 中的应用[J]. 计算机与现代化, 2013, 0(12): 30-33
作者姓名:蒋腾旭
作者单位:九江职业大学,江西九江332000
基金项目:江西省科技支撑计划项目(20112BBE50044)
摘    要:针对遗传算法和蚁群算法的不足,提出一种改进的遗传蚁群混合算法。该混合算法通过判定最优解的改良情况,将遗传算法和蚁群算法动态串行融合,以充分利用遗传算法的全局搜索能力和蚁群算法的正反馈机制。同时,依据信息素在正反馈过程中的重要作用,提出一种改进的带奖惩项的信息素更新机制。仿真计算结果表明,本文提出的混合算法在求解TSP方面,收敛速度和求解质量均较传统的遗传算法及蚁群算法要好。

关 键 词:遗传算法  蚁群算法  串行融合  改良情况  奖惩项  信息素更新

Application of Improved Genetic Ant Colony Hybrid Algorithm in TSP
JIANG Teng-xu. Application of Improved Genetic Ant Colony Hybrid Algorithm in TSP[J]. Computer and Modernization, 2013, 0(12): 30-33
Authors:JIANG Teng-xu
Affiliation:JIANG Teng-xu (Jiujiang Vocational University, Jiujiang 332000, China)
Abstract:Aimed at the shortcomings of genetic algorithm ( GA) and ant colony algorithm ( ACA) , an improved genetic ant colo-ny hybrid algorithm is presented .By determining the improved situation of the optimal solution , the hybird algorithm actualizes dynamic serial fusion for GA and ACA , which makes full use of global search ability of GA and positive feedback mechanism of ACA.Meanwhile , according as the importance of pheromone in positive feedback process , an improved pheromone update mech-anism with encouragement or penalty item is proposed .Computing simulation examples show the hybrid algorithm is of much high-er convergence speed and much better quality of solutions than that of classical GA or ACA .
Keywords:genetic algorithm  ant colony algorithm  serial fusion  improved situation  encouragement or penalty item  phero-mone update
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号