首页 | 本学科首页   官方微博 | 高级检索  
     

基于并行多类支持向量机的蛋白质结构预测*
引用本文:王栋,孙济洲,李福超,宋婷b. 基于并行多类支持向量机的蛋白质结构预测*[J]. 计算机应用研究, 2011, 28(2): 464-467. DOI: 10.3969/j.issn.1001-3695.2011.02.015
作者姓名:王栋  孙济洲  李福超  宋婷b
作者单位:1. 天津大学计算机科学与技术学院,天津,300072;河南农业大学信息化管理处,郑州,450002
2. 天津大学计算机科学与技术学院,天津,300072
3. 河南农业大学信息化管理处,郑州,450002
4. 天津大学软件学院,天津,300072
基金项目:天津市科技支撑重点项目(09ZCKFGX00400);河南省高等教育信息化工程项目(2008xxh011)
摘    要:
在远同源检测的蛋白质结构预测方法中,基于支持向量机的方法取得了优于其他方法的高准确性,但这类方法只能完成对目标蛋白质作出是否属于特定蛋白质结构的判别,而实际应用中常需要直接给出具体的结构预测结果.提出一种基于多类支持向量机的蛋白质结构预测方法,通过采用加权一对多的多类分类方法对标准支持向量机输出结果进行综合评价,获得唯...

关 键 词:蛋白质结构预测  多类支持向量机  并行计算  远同源检测

Protein structure prediction based on parallel multi-class SVM
WANG Dong,SUN Ji-zhou,LI Fu-chao,SONG Tingb. Protein structure prediction based on parallel multi-class SVM[J]. Application Research of Computers, 2011, 28(2): 464-467. DOI: 10.3969/j.issn.1001-3695.2011.02.015
Authors:WANG Dong  SUN Ji-zhou  LI Fu-chao  SONG Tingb
Affiliation:(1.a.School of Computer Science & Technology, b.School of Computer Software, Tianjin University, Tianjin 300072, China; 2.Dept. of Information Management, Henan Agricultural University, Zhengzhou 450002, China)
Abstract:
SVM-based methods achieved the highest accuracy compared to other methods in protein structure prediction base on remote homology detection, but these methods could only judge if the target protein had a special structure. Presented a protein structure prediction method which could predict the unique structure class by integrating the standard SVM output using weighted one-vs-rest multi-class classification method and the algorithmic performance was further improved by including parallel computing technology. The experiments show that the method based on parallel multi-class SVM obtained higher accuracy and operation speed.
Keywords:protein structure prediction   multi-class SVM   parallel computing   remote homology detection
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号