首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于群智能的快速多目标优化算法
引用本文:邹卫强,卜质琼. 一种基于群智能的快速多目标优化算法[J]. 计算机工程与应用, 2008, 44(6): 59-61. DOI: 10.3778/j.issn.1002-8331.2008.06.017
作者姓名:邹卫强  卜质琼
作者单位:1.广东技术师范学院 信息工程系,广州 510665 2.武汉大学 国际软件学院,武汉 430072
基金项目:国家自然科学基金(the National Natural Science Foundation of Chinaunder Grant No.60603008)。
摘    要:
粒子群优化算法是一种典型的仿真群智能的算法。探讨了利用粒子群算法求解多目标优化问题,为了提高算法速度,采用了几何Pareto选择算法作为文档算法,用多方向搜索的办法寻找极端点。实验表明:该算法得到的解的数量多,速度快并且近似前沿的程度比较高。

关 键 词:多目标优化  群智能  Pareto最优集  几何Pareto选择
文章编号:1002-8331(2008)06-0059-03
收稿时间:2007-10-09
修稿时间:2007-12-24

Fast multi-objective optimization algorithm based on swarm intelligence
ZOU Wei-qiang,BU Zhi-qiong. Fast multi-objective optimization algorithm based on swarm intelligence[J]. Computer Engineering and Applications, 2008, 44(6): 59-61. DOI: 10.3778/j.issn.1002-8331.2008.06.017
Authors:ZOU Wei-qiang  BU Zhi-qiong
Affiliation:1.Dept. of Information Engineering,Guangdong Polytechnic Normal University,Guangzhou 510665,China 2.International School of Software,Wuhan University,Wuhan 430072,China
Abstract:
Particle swarm optimization is recognized as a classic algorithm simulating swarm intelligence.A new algorithm based on particle swarm optimization is discussed,which uses geometrical Pareto selection algorithm as archiving algorithm for improving the speed and uses multiple-direction search for seeking extreme points.The experimental results show that this algorithm can obtain many enough solutions and is insensitive to steep fronts,fast and more approximated to the true Pareto front.
Keywords:multi-objective optimization  swam intelligence  Pareto optimal set  geometrical Pareto selection
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号