首页 | 本学科首页   官方微博 | 高级检索  
     

基于联邦强化学习的分布式模型剪枝
作者姓名:聂宇铭  臧文科  马学豪  刘宇儒  包致成  张镇  彭亿
作者单位:中国石油大学(华东), 青岛 266580;青岛西海岸新区工业和信息化局, 青岛 266555
摘    要:联邦学习系统中,在资源受限的边缘端进行本地模型训练存在一定的挑战.计算、存储、能耗等方面的限制时刻影响着模型规模及效果.传统的联邦剪枝方法在联邦训练过程中对模型进行剪裁,但仍存在无法根据模型所处环境自适应修剪以及移除一些重要参数导致模型性能下降的情况.本文提出基于联邦强化学习的分布式模型剪枝方法以解决此问题.首先,将模型剪枝过程抽象化,建立马尔可夫决策过程,使用DQN算法构建通用强化剪枝模型,动态调整剪枝率,提高模型的泛化性能.其次设计针对稀疏模型的聚合方法,辅助强化泛化剪枝方法,更好地优化模型结构,降低模型的复杂度.最后,在多个公开数据集上将本方法与不同基线方法进行比较.实验结果表明,本文所提出的方法在保持模型效果的同时减少模型复杂度.

关 键 词:联邦学习  模型剪枝  强化学习  联邦剪枝  深度学习  
收稿时间:2023-11-07
修稿时间:2023-12-11
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号