首页 | 本学科首页   官方微博 | 高级检索  
     


Issues in convergence improvement for non-linear finite element programs
Authors:Sven K. Esche  Gary L. Kinzel  Taylan Altan
Abstract:Systems of non-linear equations as they arise when analysing various physical phenomena and technological processes by the implicit Finite Element Method (FEM) are commonly solved by the Newton–Raphson method. The modelling of sheet metal forming processes is one example of highly non-linear problems where the iterative solution procedure can become very slow or diverge. This paper focuses on techniques to overcome these numerical difficulties. Several methods to generate initial guesses within the radius of convergence are proposed. Appropriate stopping criteria for the iterative procedure are discussed. A combination of various line search methods with the continuation method is proposed. The efficiency and robustness of these numerical procedures are compared based on a set of test examples. A particular form of line search was identified which allows the stable and efficient solution of highly non-linear sheet metal forming problems. Even though the present investigations were motivated by the application of the implicit FEM to the simulation of sheet metal forming processes, the findings are general enough to be applicable to a wide spectrum of non-linear FEM applications. © 1997 John Wiley & Sons, Ltd.
Keywords:non-linear FEM  non-linear equations  initial guess generation  convergence  line search  continuation method  stopping criteria
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号