Abstract: | A method for calculating improved transverse shear stresses in laminated composite plates, which bases on the first-order shear deformation theory is developed. In contrast to many recently established methods, either higher-order lamination theories or layerwise theories, it is easily applicable to finite elements, since only C0-continuity is necessary and the numerical effort is low. The basic idea is to calculate the transverse shear stresses directly from the transverse shear forces by neglecting the influence of the membrane forces and assuming two cylindrical bending modes. Shear correction factors are no longer required, since the transverse shear stiffnesses are also provided. Numerical examples for symmetric cross-ply and antisymmetric angle-ply laminates show the superiority of the method against using shear correction factors. Furthermore, results obtained with MSC/NASTRAN, which uses a similar but simplified approach, are surpassed. © 1997 by John Wiley & Sons, Ltd. |