首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小风险贝叶斯分类器的茶叶茶梗分类
引用本文:张春燕,陈笋,张俊峰,李潭. 基于最小风险贝叶斯分类器的茶叶茶梗分类[J]. 计算机工程与应用, 2012, 48(28): 187-192,239
作者姓名:张春燕  陈笋  张俊峰  李潭
作者单位:安徽大学数学科学学院,合肥,230601
基金项目:国家自然科学基金(No.61073116/F020508)
摘    要:目前在茶叶实际生产加工过程中,茶叶茶梗分拣自动化技术还处于不成熟阶段,分拣机械的精确度和效率还不能达到预期目的,必须通过再次人工分拣过程,大大增加了时间和人力成本。针对数码相机采集到的茶叶、茶梗数字图像,经过预处理后提取出样本的颜色和形状特征,并利用多元高斯模型进行建模,通过最小风险贝叶斯分类器对其进行分类。实验证明基于最小风险的贝叶斯分类器的分类方法是可行的,并取得了良好的分类效果。

关 键 词:最小风险  贝叶斯决策  数学形态学

Classification of tea and stalk based on minimum risk Bayesian classifier
ZHANG Chunyan , CHEN Sun , ZHANG Junfeng , LI Tan. Classification of tea and stalk based on minimum risk Bayesian classifier[J]. Computer Engineering and Applications, 2012, 48(28): 187-192,239
Authors:ZHANG Chunyan    CHEN Sun    ZHANG Junfeng    LI Tan
Affiliation:School of Mathematical Science,Anhui University,Hefei 230601,China
Abstract:Currently,in the process of actual production and processing of tea,the technology of tea-leaf and tea-stalk automational sorting is still in their infancy,and the precision and efficiency of sorting machinery hardly can achieve the desired objective.So the time and manpower costs must be increased again through the prcocess of manual sorting.In this paper,the digital camera is used to collect numeric pictures of tea-leaf and tea-stalk,then the color and shape features of these samples are extracted after pretreatment,and model is built with the use of multi-Gaussian model.The minimum risk Bayes classifier model is used to separate tea-leaf from tea-stalk.Experiments show that the minimum risk-based Bayesian classifier is feasible,and can obtain good classification results.
Keywords:minimum risk  Bayes decision  mathematical morphplogy
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号