首页 | 本学科首页   官方微博 | 高级检索  
     

基于模拟谐振子的优化K-means聚类算法
引用本文:于海涛,王慧强,李梓,韩立娟. 基于模拟谐振子的优化K-means聚类算法[J]. 计算机工程与应用, 2012, 48(30): 122-127
作者姓名:于海涛  王慧强  李梓  韩立娟
作者单位:1.大庆师范学院 计算机科学与信息技术学院,黑龙江 大庆 1637122.哈尔滨工程大学 计算机科学与技术学院,哈尔滨 1500013.大庆石油管理局采油四厂,黑龙江 大庆 163712
基金项目:黑龙江省自然科学基金项目(No.F200923)
摘    要:针对K-means算法全局搜索能力的不足,提出了基于模拟谐振子的优化K-means聚类算法(SHO-KM),该算法克服了K-means聚类算法对初始聚类中心选择敏感问题,能够获得全局最优的聚类划分。为了提高聚类划分质量,在聚类过程中采用基于Fisher分值的属性加权的实体之间距离计算方法,使用属性加权距离计算方法进行聚类划分时,无论是球形数据还是椭球形数据都能够获得较好的聚类划分结果。对KDD-99数据集的仿真实验结果表明,该算法在入侵检测中获得了理想的检测率和误报率。

关 键 词:聚类  模拟谐振子  Fisher分值  属性加权  入侵检测  

Optimized K-means clustering algorithm based on simulated harmonic oscillator
YU Haitao , WANG Huiqiang , LI Zi , HAN Lijuan. Optimized K-means clustering algorithm based on simulated harmonic oscillator[J]. Computer Engineering and Applications, 2012, 48(30): 122-127
Authors:YU Haitao    WANG Huiqiang    LI Zi    HAN Lijuan
Affiliation:1.School of Computer Science and Information Technology, Daqing Normal University, Daqing, Heilongjiang 163712, China2.School of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China3.4th Oil Production Plant, PetroChina Daqing Oilfield, Daqing, Heilongjiang 163712, China
Abstract:Aiming at the lack of global search capability of K-means algorithm, optimized K-means clustering algorithm based on Simulated Harmonic Oscillator(SHO-KM)is presented, which can overcome the problem of initial clustering center selection sensitivity of K-means and can obtain global optimized clustering partition. To improve clustering partition quality, an attribute-weighting distance computation method based on Fisher value is used in custering process. The better clustering partition can also be obtained for whether spherical data or ellipsodal data. Simulation experiment is implemented over data set KDD-99. The result shows that the satisfying detection rate and false acceptance rate can be obtained in network intrusion detection.
Keywords:clustering  simulated harmonic oscillator  Fisher value  attribute-weighting  intrusion detection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号