首页 | 本学科首页   官方微博 | 高级检索  
     


Programmable polymer thin film and non-volatile memory device
Authors:Ouyang Jianyong  Chu Chih-Wei  Szmanda Charles R  Ma Liping  Yang Yang
Affiliation:Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA.
Abstract:
Building on the success of organic electronic devices, such as light-emitting diodes and field-effect transistors, procedures for fabricating non-volatile organic memory devices are now being explored. Here, we demonstrate a novel organic memory device fabricated by solution processing. Programmable electrical bistability was observed in a device made from a polystyrene film containing gold nanoparticles and 8-hydroxyquinoline sandwiched between two metal electrodes. The as-prepared device, which is in a low-conductivity state, displays an abrupt transition to a high-conductivity state under an external bias of 2.8 V. These two states differ in conductivity by about four orders of magnitude. Applying a negative bias of 1.8 V causes the device to return to the low-conductivity state. The electronic transition is attributed to the electric-field-induced charge transfer between the gold nanoparticles and 8-hydroxyquinoline. The transition from the low- to the high-conductivity state takes place in nanoseconds, and is non-volatile, indicating that the device may be used for low-cost, high-density memory storage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号