摘 要: | ![]() 微表情检测广泛应用在谎言识别、心理健康和情感分析等场合,构建微表情检测模型需要充足的训练数据,但是标注微表情需要过高的成本,导致自发性微表情样本库数量过少,给微表情检测带来了极大的挑战。针对这个挑战提出一种新的微表情检测方法FLOW-AENET:提取人脸的光流特征,将光流特征作为自编码器的输入,利用深度学习模型对特征进行处理,再将学习到的特征加入SVM分类器中做二分类,在含有微表情的一类中,根据ROIS区域的变化程度判断出微表情产生的起始帧、顶峰帧和结束帧。在CASEME、CASME II等数据集上进行实验研究,结果表明,FLOW-AENET方法相比于其他方法具有明显的优势。
|