首页 | 本学科首页   官方微博 | 高级检索  
     


Optimum design of steel frames with stability constraints
Authors:MP Saka
Affiliation:

Department of Civil Engineering, University of Bahrain, P.O. Box 32038, Bahrain

Abstract:Optimum design algorithms based on the optimality criteria approach are proven to be efficient and general. They have the flexibility of accomodating variety of design constraints such as displacement, stress, stability and frequency in the design problem. The design methods developed recently, although considering one or more of these constraints, lack the necessity of referring to any relevant design code. The algorithm presented for the optimum design of street frames implements the displacement and combined stress limitations according to AISC. The recursive relationship for design variables in the case of dominant displacement constraints is obtained by the optimality criteria approach. The combined stress inequalities which include in-plane and lateral buckling of members are reduced into nonlinear equations of design variables. The solution of these equations gives the values of bounds for the variables in the case where the stress constraints are dominant in the design problem. The use of effective length in the combined stress constraints makes it possible to study the effect of the end rigidities on the final designs. The design procedure is simple and easy to program which makes it particularly suitable for microcomputers. A number of design examples are considered to demonstrate the practical applicability of the method. It is also shown that the design procedure can be employed in selecting the optimum topology of steel frames.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号