首页 | 本学科首页   官方微博 | 高级检索  
     

图像处理中的绝缘子缺陷检测方法
引用本文:单成,吴洪潭,石成龙,陈艳燕. 图像处理中的绝缘子缺陷检测方法[J]. 中国计量学院学报, 2010, 21(4)
作者姓名:单成  吴洪潭  石成龙  陈艳燕
作者单位:中国计量学院质量与安全工程学院
摘    要:目前国内外生产上钢化玻璃绝缘子的缺陷检测均采用传统的人工肉眼检测方法,难以满足大规模、自动化生产的需要.为此,结合基于形态学的特征检测和基于BP神经网络的缺陷分类检测,提出一种基于图像处理的玻璃件缺陷检测方法.实验结果证明了该方法的有效性.

关 键 词:钢化玻璃绝缘子  图像处理  缺陷检测  形态学  BP神经网络

Defect detection method on insulators by image processing
SHAN Cheng,WU Hong-tan,SHI Cheng-long,CHEN Yan-yan. Defect detection method on insulators by image processing[J]. Journal of China Jiliang University, 2010, 21(4)
Authors:SHAN Cheng  WU Hong-tan  SHI Cheng-long  CHEN Yan-yan
Affiliation:SHAN Cheng; WU Hong-tan; SHI Cheng-long; CHEN Yan-yan(College of Quality and Safety Engineering; China Jiliang University; Hangzhou 310018; China);
Abstract:Defect detection in toughened glass insulators is a main factor to evaluate product quality.The method of traditional manual detections is adopted in industry at home and abroad but can not satisfy the demand of large automatic productions.Therefore,with a morphological feature detection approach and the BP neural network,an approach for defect detection in glass insulators based on machine vision technology is presented.The effectiveness of this method is proved in experiments.
Keywords:toughened glass insulator  image processing  defect detection  morphology  BP neural network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号