首页 | 本学科首页   官方微博 | 高级检索  
     


Elucidation of mitochondrial effects by tetrahydroaminoacridine (tacrine) in rat, dog, monkey and human hepatic parenchymal cells
Authors:DG Robertson  TK Braden  ER Urda  ND Lalwani  FA de la Iglesia
Affiliation:Department of Pathology and Experimental Toxicology, Parke-Davis Pharmaceutical Research, Division of Warner Lambert Company, Ann Arbor, MI 48106-1047, USA.
Abstract:Tetrahydroaminoacridine (tacrine) causes morphological and functional changes in the endoplasmic reticulum, ribosomes, and mitochondria in the liver of humans and animals. In order to investigate species differences as well as to understand the morphological changes, we examined the effects of tacrine on respiration and electron transport in mitochondria isolated from rat, dog, monkey, and human liver. Tacrine produced significantly decreased respiratory control ratios (RCR) in all species at concentrations ranging from 5 to 25 microg/ml. Human mitochondria were more sensitive to tacrine effects with RCR decreased 24% at 5 microg/ml while other species were unaffected at this concentration. The tacrine effects were characterized by increased hepatic mitochondrial State 4 respiration in rats and decreased State 3 respiration in humans. Mitochondria from aged rats were more sensitive to the effects of tacrine than mitochondria from young animals, with significantly decreased RCR at 10 microg/ml in aged rats while mitochondria from young rats were unaffected at this concentration. Concomitant with the respiratory changes, mitochondrial DNA synthesis was impaired. Since tacrine undergoes extensive biotransformation, we also explored the possibility that metabolites could exert detrimental effects. The ranking order of potency for decreasing RCR caused by monohydroxylated metabolites was: tacrine > 4-OH and 7-OH > 2-OH, 1-OH, and velnacrine with the latter group of metabolites having no effect on mitochondrial respiration at concentrations up to 50 microg/ml. In vivo administration of 20 mg/kg tacrine to rats for up to 20 days caused a paradoxical increase in RCR and P/O on Day 1 and decreased RCR on Days 9 and 20, the later findings being consistent with in vitro data. From these data we propose that tacrine does not necessarily have to be metabolized to exert effects on mitochondria at different sites in the electron transport chain that differ among species. These effects are exacerbated in mitochondria from older animals and humans appear to be more sensitive than the laboratory animals studied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号