首页 | 本学科首页   官方微博 | 高级检索  
     


Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin
Authors:Zhihong Zhu  Xiaoming Zhuang  Wei Sun  Xintang Huang
Affiliation:
  • a Institute of Nano-Science and Technology Center, Huazhong Normal University, Wuhan 430079, PR China
  • b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
  • Abstract:The single-walled carbon nanotubes (SWCNTs) modified carbon ionic liquid electrode (CILE) was designed and further used for the voltammetric detection of rutin in this paper. CILE was prepared by mixing graphite powder with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate and liquid paraffin together. Based on the interaction of SWCNTs with IL present on the electrode surface, a stable SWCNTs film was formed on the CILE to get a modified electrode denoted as SWCNTs/CILE. The characteristics of SWCNTs/CILE were recorded by different methods including cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The electrochemical behaviors of rutin on the SWCNTs/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. Due to the specific interface provided by the SWCNTs-IL film, the electrochemical response of rutin was greatly enhanced with a pair of well-defined redox peaks appeared in pH 2.5 phosphate buffer solution. The oxidation peak currents showed good linear relationship with the rutin concentration in the range from 1.0 × 10− 7 to 8.0 × 10− 4 mol/L with the detection limit as 7.0 × 10− 8 mol/L (3σ). The SWCNTs/CILE showed the advantages such as excellent selectivity, improved performance, good stability and it was further applied to the rutin tablets sample detection with satisfactory results.
    Keywords:Rutin  Single-walled carbon nanotubes  Carbon ionic liquid electrode  Cyclic voltammetry  Differential pulse voltammetry
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号