首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption/desorption kinetics of Na atoms on reconstructed Si (111)-7 × 7 surface
Authors:Amit Kumar Singh Chauhan  SM Shivaprasad
Affiliation:
  • a Surface Physics and Nanostructures Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012, India
  • b ICMS, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560065, India
  • Abstract:Self-assembled nanostructures on a periodic template are fundamentally and technologically important as they put forward the possibility to fabricate and pattern micro/nano-electronics for sensors, ultra high-density memories and nanocatalysts. Alkali-metal (AM) nanostructure grown on a semiconductor surface has received considerable attention because of their simple hydrogen like electronic structure. However, little efforts have been made to understand the fundamental aspects of the growth mechanism of self-assembled nanostructures of AM on semiconductor surfaces. In this paper, we report organized investigation of kinetically controlled room-temperature (RT) adsorption/desorption of sodium (Na) metal atoms on clean reconstructed Si (111)-7 × 7 surface, by X-ray photoelectron spectroscopy (XPS). The RT uptake curve shows a layer-by-layer growth (Frank-vander Merve growth) mode of Na on Si (111)-7 × 7 surfaces and a shift is observed in the binding energy position of Na (1s) spectra. The thermal stability of the Na/Si (111) system was inspected by annealing the system to higher substrate temperatures. Within a temperature range from RT to 350 °C, the temperature induced mobility to the excess Na atoms sitting on top of the bilayer, allowing to arrange themselves. Na atoms desorbed over a wide temperature range of 370 °C, before depleting the Si (111) surface at temperature 720 °C. The acquired valence-band (VB) spectra during Na growth revealed the development of new electronic-states near the Fermi level and desorption leads the termination of these. For Na adsorption up to 2 monolayers, decrease in work function (−1.35 eV) was observed, whereas work function of the system monotonically increases with Na desorption from the Si surface as observed by other studies also. This kinetic and thermodynamic study of Na adsorbed Si (111)-7 × 7 system can be utilized in fabrication of sensors used in night vision devices.
    Keywords:Sodium  Silicon  Nanostructure  X-ray photoelectron spectroscopy
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号