首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的网络拥塞控制新算法
引用本文:陆锦军,王执铨. 基于粒子群优化的网络拥塞控制新算法[J]. 电子学报, 2007, 35(8): 1446-1451
作者姓名:陆锦军  王执铨
作者单位:南通职业大学现代教育技术中心,江苏南通,226007;南京理工大学自动化学院,江苏南京,210094;南京理工大学自动化学院,江苏南京,210094
摘    要:PI控制器常用于主动队列管理中,但参数整定上的试凑法具有盲目性,算法的瞬态性能也不够理想.本文推导了基于流体流理论的网络简化模型,基于该模型将集群智能中的改进粒子群优化算法(PSO)应用于PID控制器参数优化,定义了一个综合调节时间、上升时间、超调量、系统静态误差、正弦跟踪误差等动静态性能指标函数,在给定的参数空间进行组合优化搜索,迅速求得获取使性能指标优化函数极小化的一组PID控制器参数,将PID控制器应用于网络主动队列管理系统中.仿真结果表明,在大时滞和突发业务流的冲击两种情况下,该方法设计的控制器的动静态性能优于RED、PI算法,超调量均小于5%,调节时间分别小于5秒、4秒,稳态误差分别小于两个数据包和3个数据包.

关 键 词:主动队列管理  网络拥塞  PID控制  粒子群优化
文章编号:0372-2112(2007)08-1446-06
收稿时间:2006-11-16
修稿时间:2006-11-16

A New Network Cogestion Control Algorithm Based on Particle Swarm Optimization
LU Jin-jun,WANG Zhi-quan. A New Network Cogestion Control Algorithm Based on Particle Swarm Optimization[J]. Acta Electronica Sinica, 2007, 35(8): 1446-1451
Authors:LU Jin-jun  WANG Zhi-quan
Affiliation:1. Center of Education and Technology,Nantong Vocational College,Nantong,Jiangsu 226007,China;2. School of Automation,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China
Abstract:PI controller is often used to control active queue management(AQM),but its trial method of tuning controller is aimless,and the dynamic performance of algorithm is not enough satisfying.Simplified network model based on fluid flow theory is derived in this paper,and based on this model,an improved algorithm,i.e.particle swarm optimization(PSO) algorithm is applied to optimization of PID controller parameters.In the following,a new performance function including the system adjusting time,rise time,overshoot,steady state error and sinusoidal position tracking error is defined.It is fast to calculate a group of PID controller parameters that minimize the evaluation function by searching in the given controller parameter area,and then the PID controller is applied to AQM system.The simulation experimental results show that under the two conditions of large time delay and sudden business flow,the overshoot is both less than 5%,the adjusting time is less than 5 seconds and 4 seconds separately,and the steady error is less than 2 packets and 3 packets separately,so the dynamic state and steady state performances of the proposed algorithm are obviously superior to those of the existing RED and PI algorithms under the two conditions.
Keywords:active queue management  network congestion  PID control  particle swarm optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号