摘 要: | 实际图像检索过程中,用户提供的相关反馈有限,但存在大量未标记图像数据. 本文在前期半监督流形图像检索工作的基础上,提出一种基于Nystrm低阶 近似的半监督流形排序图像检索方法.通过采用半监督的流形正则化框架, 将图像数据嵌入到低维流形结构中进行分类排序,以充分利用大量未标记数据, 并兼顾分类误差、数据分布的几何结构以及分类函数的复杂性.针对半监督学习速度缓慢的问题, 基于Nystrm低阶近似对学习过程进行加速.在较大规模的Corel图像数据集上进行了检索实验, 实验结果表明该方法能获得较好的效果.
|